'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  fst(0(), Z) -> nil()
     , fst(s(X), cons(Y, Z)) ->
       cons(Y, n__fst(activate(X), activate(Z)))
     , from(X) -> cons(X, n__from(s(X)))
     , add(0(), X) -> X
     , add(s(X), Y) -> s(n__add(activate(X), Y))
     , len(nil()) -> 0()
     , len(cons(X, Z)) -> s(n__len(activate(Z)))
     , fst(X1, X2) -> n__fst(X1, X2)
     , from(X) -> n__from(X)
     , add(X1, X2) -> n__add(X1, X2)
     , len(X) -> n__len(X)
     , activate(n__fst(X1, X2)) -> fst(X1, X2)
     , activate(n__from(X)) -> from(X)
     , activate(n__add(X1, X2)) -> add(X1, X2)
     , activate(n__len(X)) -> len(X)
     , activate(X) -> X}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  fst^#(0(), Z) -> c_0()
    , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
    , from^#(X) -> c_2()
    , add^#(0(), X) -> c_3()
    , add^#(s(X), Y) -> c_4(activate^#(X))
    , len^#(nil()) -> c_5()
    , len^#(cons(X, Z)) -> c_6(activate^#(Z))
    , fst^#(X1, X2) -> c_7()
    , from^#(X) -> c_8()
    , add^#(X1, X2) -> c_9()
    , len^#(X) -> c_10()
    , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
    , activate^#(n__from(X)) -> c_12(from^#(X))
    , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))
    , activate^#(n__len(X)) -> c_14(len^#(X))
    , activate^#(X) -> c_15()}
  
  The usable rules are:
   {}
  
  The estimated dependency graph contains the following edges:
   {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))}
     ==> {activate^#(n__len(X)) -> c_14(len^#(X))}
   {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))}
     ==> {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
   {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))}
     ==> {activate^#(n__from(X)) -> c_12(from^#(X))}
   {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))}
     ==> {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))}
   {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))}
     ==> {activate^#(X) -> c_15()}
   {add^#(s(X), Y) -> c_4(activate^#(X))}
     ==> {activate^#(n__len(X)) -> c_14(len^#(X))}
   {add^#(s(X), Y) -> c_4(activate^#(X))}
     ==> {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
   {add^#(s(X), Y) -> c_4(activate^#(X))}
     ==> {activate^#(n__from(X)) -> c_12(from^#(X))}
   {add^#(s(X), Y) -> c_4(activate^#(X))}
     ==> {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))}
   {add^#(s(X), Y) -> c_4(activate^#(X))}
     ==> {activate^#(X) -> c_15()}
   {len^#(cons(X, Z)) -> c_6(activate^#(Z))}
     ==> {activate^#(n__len(X)) -> c_14(len^#(X))}
   {len^#(cons(X, Z)) -> c_6(activate^#(Z))}
     ==> {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
   {len^#(cons(X, Z)) -> c_6(activate^#(Z))}
     ==> {activate^#(n__from(X)) -> c_12(from^#(X))}
   {len^#(cons(X, Z)) -> c_6(activate^#(Z))}
     ==> {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))}
   {len^#(cons(X, Z)) -> c_6(activate^#(Z))}
     ==> {activate^#(X) -> c_15()}
   {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))}
     ==> {fst^#(X1, X2) -> c_7()}
   {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))}
     ==> {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))}
   {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))}
     ==> {fst^#(0(), Z) -> c_0()}
   {activate^#(n__from(X)) -> c_12(from^#(X))}
     ==> {from^#(X) -> c_8()}
   {activate^#(n__from(X)) -> c_12(from^#(X))}
     ==> {from^#(X) -> c_2()}
   {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
     ==> {add^#(X1, X2) -> c_9()}
   {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
     ==> {add^#(s(X), Y) -> c_4(activate^#(X))}
   {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
     ==> {add^#(0(), X) -> c_3()}
   {activate^#(n__len(X)) -> c_14(len^#(X))}
     ==> {len^#(X) -> c_10()}
   {activate^#(n__len(X)) -> c_14(len^#(X))}
     ==> {len^#(cons(X, Z)) -> c_6(activate^#(Z))}
   {activate^#(n__len(X)) -> c_14(len^#(X))}
     ==> {len^#(nil()) -> c_5()}
  
  We consider the following path(s):
   1) {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
       , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
       , len^#(cons(X, Z)) -> c_6(activate^#(Z))
       , activate^#(n__len(X)) -> c_14(len^#(X))
       , add^#(s(X), Y) -> c_4(activate^#(X))
       , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           fst(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           nil() = [0]
           s(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__fst(x1, x2) = [0] x1 + [0] x2 + [0]
           activate(x1) = [0] x1 + [0]
           from(x1) = [0] x1 + [0]
           n__from(x1) = [0] x1 + [0]
           add(x1, x2) = [0] x1 + [0] x2 + [0]
           n__add(x1, x2) = [0] x1 + [0] x2 + [0]
           len(x1) = [0] x1 + [0]
           n__len(x1) = [0] x1 + [0]
           fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_0() = [0]
           c_1(x1, x2) = [0] x1 + [0] x2 + [0]
           activate^#(x1) = [0] x1 + [0]
           from^#(x1) = [0] x1 + [0]
           c_2() = [0]
           add^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           len^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules:
              {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
               , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
               , len^#(cons(X, Z)) -> c_6(activate^#(Z))
               , activate^#(n__len(X)) -> c_14(len^#(X))
               , add^#(s(X), Y) -> c_4(activate^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate^#(n__len(X)) -> c_14(len^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate^#(n__len(X)) -> c_14(len^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [0]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [2]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [2]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [1]
                  activate^#(x1) = [1] x1 + [0]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {add^#(s(X), Y) -> c_4(activate^#(X))}
            and weakly orienting the rules
            {  activate^#(n__len(X)) -> c_14(len^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {add^#(s(X), Y) -> c_4(activate^#(X))}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [0]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [12]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [8]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [1]
                  activate^#(x1) = [1] x1 + [0]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [3]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {len^#(cons(X, Z)) -> c_6(activate^#(Z))}
            and weakly orienting the rules
            {  add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {len^#(cons(X, Z)) -> c_6(activate^#(Z))}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [0]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [8]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [8]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [1]
                  activate^#(x1) = [1] x1 + [0]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))}
            and weakly orienting the rules
            {  len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [8]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [12]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [8]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [1]
                  activate^#(x1) = [1] x1 + [0]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [7]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))}
            and weakly orienting the rules
            {  activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
             , len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [8]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [8]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [8]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [0]
                  activate^#(x1) = [1] x1 + [0]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  len^#(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [1]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
                 , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
                 , len^#(cons(X, Z)) -> c_6(activate^#(Z))
                 , add^#(s(X), Y) -> c_4(activate^#(X))
                 , activate^#(n__len(X)) -> c_14(len^#(X))
                 , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            
            Details:         
              The given problem does not contain any strict rules
      
   2) {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
       , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
       , len^#(cons(X, Z)) -> c_6(activate^#(Z))
       , activate^#(n__len(X)) -> c_14(len^#(X))
       , add^#(s(X), Y) -> c_4(activate^#(X))
       , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))
       , activate^#(n__from(X)) -> c_12(from^#(X))
       , from^#(X) -> c_8()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           fst(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           nil() = [0]
           s(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__fst(x1, x2) = [0] x1 + [0] x2 + [0]
           activate(x1) = [0] x1 + [0]
           from(x1) = [0] x1 + [0]
           n__from(x1) = [0] x1 + [0]
           add(x1, x2) = [0] x1 + [0] x2 + [0]
           n__add(x1, x2) = [0] x1 + [0] x2 + [0]
           len(x1) = [0] x1 + [0]
           n__len(x1) = [0] x1 + [0]
           fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_0() = [0]
           c_1(x1, x2) = [0] x1 + [0] x2 + [0]
           activate^#(x1) = [0] x1 + [0]
           from^#(x1) = [0] x1 + [0]
           c_2() = [0]
           add^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           len^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {from^#(X) -> c_8()}
            Weak Rules:
              {  activate^#(n__from(X)) -> c_12(from^#(X))
               , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
               , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
               , len^#(cons(X, Z)) -> c_6(activate^#(Z))
               , activate^#(n__len(X)) -> c_14(len^#(X))
               , add^#(s(X), Y) -> c_4(activate^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {from^#(X) -> c_8()}
            and weakly orienting the rules
            {  activate^#(n__from(X)) -> c_12(from^#(X))
             , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
             , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
             , len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {from^#(X) -> c_8()}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [8]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [1] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [3]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [0]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [3]
                  activate^#(x1) = [1] x1 + [1]
                  from^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [3]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  from^#(X) -> c_8()
                 , activate^#(n__from(X)) -> c_12(from^#(X))
                 , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
                 , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
                 , len^#(cons(X, Z)) -> c_6(activate^#(Z))
                 , activate^#(n__len(X)) -> c_14(len^#(X))
                 , add^#(s(X), Y) -> c_4(activate^#(X))
                 , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            
            Details:         
              The given problem does not contain any strict rules
      
   3) {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
       , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
       , len^#(cons(X, Z)) -> c_6(activate^#(Z))
       , activate^#(n__len(X)) -> c_14(len^#(X))
       , add^#(s(X), Y) -> c_4(activate^#(X))
       , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))
       , fst^#(0(), Z) -> c_0()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           fst(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           nil() = [0]
           s(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__fst(x1, x2) = [0] x1 + [0] x2 + [0]
           activate(x1) = [0] x1 + [0]
           from(x1) = [0] x1 + [0]
           n__from(x1) = [0] x1 + [0]
           add(x1, x2) = [0] x1 + [0] x2 + [0]
           n__add(x1, x2) = [0] x1 + [0] x2 + [0]
           len(x1) = [0] x1 + [0]
           n__len(x1) = [0] x1 + [0]
           fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_0() = [0]
           c_1(x1, x2) = [0] x1 + [0] x2 + [0]
           activate^#(x1) = [0] x1 + [0]
           from^#(x1) = [0] x1 + [0]
           c_2() = [0]
           add^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           len^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {fst^#(0(), Z) -> c_0()}
            Weak Rules:
              {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
               , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
               , len^#(cons(X, Z)) -> c_6(activate^#(Z))
               , activate^#(n__len(X)) -> c_14(len^#(X))
               , add^#(s(X), Y) -> c_4(activate^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {fst^#(0(), Z) -> c_0()}
            and weakly orienting the rules
            {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
             , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
             , len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {fst^#(0(), Z) -> c_0()}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [8]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [8]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [8]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [1]
                  activate^#(x1) = [1] x1 + [0]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [7]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  fst^#(0(), Z) -> c_0()
                 , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
                 , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
                 , len^#(cons(X, Z)) -> c_6(activate^#(Z))
                 , activate^#(n__len(X)) -> c_14(len^#(X))
                 , add^#(s(X), Y) -> c_4(activate^#(X))
                 , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            
            Details:         
              The given problem does not contain any strict rules
      
   4) {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
       , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
       , len^#(cons(X, Z)) -> c_6(activate^#(Z))
       , activate^#(n__len(X)) -> c_14(len^#(X))
       , add^#(s(X), Y) -> c_4(activate^#(X))
       , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))
       , activate^#(n__from(X)) -> c_12(from^#(X))
       , from^#(X) -> c_2()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           fst(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           nil() = [0]
           s(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__fst(x1, x2) = [0] x1 + [0] x2 + [0]
           activate(x1) = [0] x1 + [0]
           from(x1) = [0] x1 + [0]
           n__from(x1) = [0] x1 + [0]
           add(x1, x2) = [0] x1 + [0] x2 + [0]
           n__add(x1, x2) = [0] x1 + [0] x2 + [0]
           len(x1) = [0] x1 + [0]
           n__len(x1) = [0] x1 + [0]
           fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_0() = [0]
           c_1(x1, x2) = [0] x1 + [0] x2 + [0]
           activate^#(x1) = [0] x1 + [0]
           from^#(x1) = [0] x1 + [0]
           c_2() = [0]
           add^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           len^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {from^#(X) -> c_2()}
            Weak Rules:
              {  activate^#(n__from(X)) -> c_12(from^#(X))
               , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
               , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
               , len^#(cons(X, Z)) -> c_6(activate^#(Z))
               , activate^#(n__len(X)) -> c_14(len^#(X))
               , add^#(s(X), Y) -> c_4(activate^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {from^#(X) -> c_2()}
            and weakly orienting the rules
            {  activate^#(n__from(X)) -> c_12(from^#(X))
             , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
             , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
             , len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {from^#(X) -> c_2()}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [8]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [1] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [3]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [0]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [3]
                  activate^#(x1) = [1] x1 + [1]
                  from^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [3]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  from^#(X) -> c_2()
                 , activate^#(n__from(X)) -> c_12(from^#(X))
                 , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
                 , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
                 , len^#(cons(X, Z)) -> c_6(activate^#(Z))
                 , activate^#(n__len(X)) -> c_14(len^#(X))
                 , add^#(s(X), Y) -> c_4(activate^#(X))
                 , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            
            Details:         
              The given problem does not contain any strict rules
      
   5) {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
       , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
       , len^#(cons(X, Z)) -> c_6(activate^#(Z))
       , activate^#(n__len(X)) -> c_14(len^#(X))
       , add^#(s(X), Y) -> c_4(activate^#(X))
       , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))
       , activate^#(n__from(X)) -> c_12(from^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           fst(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           nil() = [0]
           s(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__fst(x1, x2) = [0] x1 + [0] x2 + [0]
           activate(x1) = [0] x1 + [0]
           from(x1) = [0] x1 + [0]
           n__from(x1) = [0] x1 + [0]
           add(x1, x2) = [0] x1 + [0] x2 + [0]
           n__add(x1, x2) = [0] x1 + [0] x2 + [0]
           len(x1) = [0] x1 + [0]
           n__len(x1) = [0] x1 + [0]
           fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_0() = [0]
           c_1(x1, x2) = [0] x1 + [0] x2 + [0]
           activate^#(x1) = [0] x1 + [0]
           from^#(x1) = [0] x1 + [0]
           c_2() = [0]
           add^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           len^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {activate^#(n__from(X)) -> c_12(from^#(X))}
            Weak Rules:
              {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
               , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
               , len^#(cons(X, Z)) -> c_6(activate^#(Z))
               , activate^#(n__len(X)) -> c_14(len^#(X))
               , add^#(s(X), Y) -> c_4(activate^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__from(X)) -> c_12(from^#(X))}
            and weakly orienting the rules
            {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
             , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
             , len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__from(X)) -> c_12(from^#(X))}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [8]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [1] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [0]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [0]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [9]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [7]
                  activate^#(x1) = [1] x1 + [1]
                  from^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  activate^#(n__from(X)) -> c_12(from^#(X))
                 , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
                 , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
                 , len^#(cons(X, Z)) -> c_6(activate^#(Z))
                 , activate^#(n__len(X)) -> c_14(len^#(X))
                 , add^#(s(X), Y) -> c_4(activate^#(X))
                 , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            
            Details:         
              The given problem does not contain any strict rules
      
   6) {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
       , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
       , len^#(cons(X, Z)) -> c_6(activate^#(Z))
       , activate^#(n__len(X)) -> c_14(len^#(X))
       , add^#(s(X), Y) -> c_4(activate^#(X))
       , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))
       , add^#(0(), X) -> c_3()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           fst(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           nil() = [0]
           s(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__fst(x1, x2) = [0] x1 + [0] x2 + [0]
           activate(x1) = [0] x1 + [0]
           from(x1) = [0] x1 + [0]
           n__from(x1) = [0] x1 + [0]
           add(x1, x2) = [0] x1 + [0] x2 + [0]
           n__add(x1, x2) = [0] x1 + [0] x2 + [0]
           len(x1) = [0] x1 + [0]
           n__len(x1) = [0] x1 + [0]
           fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_0() = [0]
           c_1(x1, x2) = [0] x1 + [0] x2 + [0]
           activate^#(x1) = [0] x1 + [0]
           from^#(x1) = [0] x1 + [0]
           c_2() = [0]
           add^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           len^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {add^#(0(), X) -> c_3()}
            Weak Rules:
              {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
               , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
               , len^#(cons(X, Z)) -> c_6(activate^#(Z))
               , activate^#(n__len(X)) -> c_14(len^#(X))
               , add^#(s(X), Y) -> c_4(activate^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {add^#(0(), X) -> c_3()}
            and weakly orienting the rules
            {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
             , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
             , len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {add^#(0(), X) -> c_3()}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [8]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [8]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [8]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [1]
                  activate^#(x1) = [1] x1 + [0]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [7]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  add^#(0(), X) -> c_3()
                 , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
                 , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
                 , len^#(cons(X, Z)) -> c_6(activate^#(Z))
                 , activate^#(n__len(X)) -> c_14(len^#(X))
                 , add^#(s(X), Y) -> c_4(activate^#(X))
                 , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            
            Details:         
              The given problem does not contain any strict rules
      
   7) {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
       , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
       , len^#(cons(X, Z)) -> c_6(activate^#(Z))
       , activate^#(n__len(X)) -> c_14(len^#(X))
       , add^#(s(X), Y) -> c_4(activate^#(X))
       , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))
       , activate^#(X) -> c_15()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           fst(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           nil() = [0]
           s(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__fst(x1, x2) = [0] x1 + [0] x2 + [0]
           activate(x1) = [0] x1 + [0]
           from(x1) = [0] x1 + [0]
           n__from(x1) = [0] x1 + [0]
           add(x1, x2) = [0] x1 + [0] x2 + [0]
           n__add(x1, x2) = [0] x1 + [0] x2 + [0]
           len(x1) = [0] x1 + [0]
           n__len(x1) = [0] x1 + [0]
           fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_0() = [0]
           c_1(x1, x2) = [0] x1 + [0] x2 + [0]
           activate^#(x1) = [0] x1 + [0]
           from^#(x1) = [0] x1 + [0]
           c_2() = [0]
           add^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           len^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {activate^#(X) -> c_15()}
            Weak Rules:
              {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
               , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
               , len^#(cons(X, Z)) -> c_6(activate^#(Z))
               , activate^#(n__len(X)) -> c_14(len^#(X))
               , add^#(s(X), Y) -> c_4(activate^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(X) -> c_15()}
            and weakly orienting the rules
            {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
             , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
             , len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(X) -> c_15()}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [2]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [15]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [8]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [3]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [1]
                  activate^#(x1) = [1] x1 + [1]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [8]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [8]
                  c_14(x1) = [1] x1 + [3]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  activate^#(X) -> c_15()
                 , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
                 , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
                 , len^#(cons(X, Z)) -> c_6(activate^#(Z))
                 , activate^#(n__len(X)) -> c_14(len^#(X))
                 , add^#(s(X), Y) -> c_4(activate^#(X))
                 , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            
            Details:         
              The given problem does not contain any strict rules
      
   8) {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
       , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
       , len^#(cons(X, Z)) -> c_6(activate^#(Z))
       , activate^#(n__len(X)) -> c_14(len^#(X))
       , add^#(s(X), Y) -> c_4(activate^#(X))
       , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))
       , fst^#(X1, X2) -> c_7()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           fst(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           nil() = [0]
           s(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__fst(x1, x2) = [0] x1 + [0] x2 + [0]
           activate(x1) = [0] x1 + [0]
           from(x1) = [0] x1 + [0]
           n__from(x1) = [0] x1 + [0]
           add(x1, x2) = [0] x1 + [0] x2 + [0]
           n__add(x1, x2) = [0] x1 + [0] x2 + [0]
           len(x1) = [0] x1 + [0]
           n__len(x1) = [0] x1 + [0]
           fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_0() = [0]
           c_1(x1, x2) = [0] x1 + [0] x2 + [0]
           activate^#(x1) = [0] x1 + [0]
           from^#(x1) = [0] x1 + [0]
           c_2() = [0]
           add^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           len^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {fst^#(X1, X2) -> c_7()}
            Weak Rules:
              {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
               , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
               , len^#(cons(X, Z)) -> c_6(activate^#(Z))
               , activate^#(n__len(X)) -> c_14(len^#(X))
               , add^#(s(X), Y) -> c_4(activate^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {fst^#(X1, X2) -> c_7()}
            and weakly orienting the rules
            {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
             , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
             , len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {fst^#(X1, X2) -> c_7()}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [8]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [4]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [8]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [1]
                  activate^#(x1) = [1] x1 + [0]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [7]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  fst^#(X1, X2) -> c_7()
                 , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
                 , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
                 , len^#(cons(X, Z)) -> c_6(activate^#(Z))
                 , activate^#(n__len(X)) -> c_14(len^#(X))
                 , add^#(s(X), Y) -> c_4(activate^#(X))
                 , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            
            Details:         
              The given problem does not contain any strict rules
      
   9) {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
       , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
       , len^#(cons(X, Z)) -> c_6(activate^#(Z))
       , activate^#(n__len(X)) -> c_14(len^#(X))
       , add^#(s(X), Y) -> c_4(activate^#(X))
       , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))
       , add^#(X1, X2) -> c_9()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           fst(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           nil() = [0]
           s(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__fst(x1, x2) = [0] x1 + [0] x2 + [0]
           activate(x1) = [0] x1 + [0]
           from(x1) = [0] x1 + [0]
           n__from(x1) = [0] x1 + [0]
           add(x1, x2) = [0] x1 + [0] x2 + [0]
           n__add(x1, x2) = [0] x1 + [0] x2 + [0]
           len(x1) = [0] x1 + [0]
           n__len(x1) = [0] x1 + [0]
           fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_0() = [0]
           c_1(x1, x2) = [0] x1 + [0] x2 + [0]
           activate^#(x1) = [0] x1 + [0]
           from^#(x1) = [0] x1 + [0]
           c_2() = [0]
           add^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           len^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {add^#(X1, X2) -> c_9()}
            Weak Rules:
              {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
               , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
               , len^#(cons(X, Z)) -> c_6(activate^#(Z))
               , activate^#(n__len(X)) -> c_14(len^#(X))
               , add^#(s(X), Y) -> c_4(activate^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {add^#(X1, X2) -> c_9()}
            and weakly orienting the rules
            {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
             , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
             , len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {add^#(X1, X2) -> c_9()}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [8]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [4]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [8]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [1]
                  activate^#(x1) = [1] x1 + [0]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [4]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [7]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  add^#(X1, X2) -> c_9()
                 , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
                 , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
                 , len^#(cons(X, Z)) -> c_6(activate^#(Z))
                 , activate^#(n__len(X)) -> c_14(len^#(X))
                 , add^#(s(X), Y) -> c_4(activate^#(X))
                 , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            
            Details:         
              The given problem does not contain any strict rules
      
   10)
      {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
       , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
       , len^#(cons(X, Z)) -> c_6(activate^#(Z))
       , activate^#(n__len(X)) -> c_14(len^#(X))
       , add^#(s(X), Y) -> c_4(activate^#(X))
       , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))
       , len^#(nil()) -> c_5()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           fst(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           nil() = [0]
           s(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__fst(x1, x2) = [0] x1 + [0] x2 + [0]
           activate(x1) = [0] x1 + [0]
           from(x1) = [0] x1 + [0]
           n__from(x1) = [0] x1 + [0]
           add(x1, x2) = [0] x1 + [0] x2 + [0]
           n__add(x1, x2) = [0] x1 + [0] x2 + [0]
           len(x1) = [0] x1 + [0]
           n__len(x1) = [0] x1 + [0]
           fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_0() = [0]
           c_1(x1, x2) = [0] x1 + [0] x2 + [0]
           activate^#(x1) = [0] x1 + [0]
           from^#(x1) = [0] x1 + [0]
           c_2() = [0]
           add^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           len^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {len^#(nil()) -> c_5()}
            Weak Rules:
              {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
               , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
               , len^#(cons(X, Z)) -> c_6(activate^#(Z))
               , activate^#(n__len(X)) -> c_14(len^#(X))
               , add^#(s(X), Y) -> c_4(activate^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {len^#(nil()) -> c_5()}
            and weakly orienting the rules
            {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
             , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
             , len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {len^#(nil()) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [8]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [8]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [8]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [1]
                  activate^#(x1) = [1] x1 + [0]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [7]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  len^#(nil()) -> c_5()
                 , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
                 , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
                 , len^#(cons(X, Z)) -> c_6(activate^#(Z))
                 , activate^#(n__len(X)) -> c_14(len^#(X))
                 , add^#(s(X), Y) -> c_4(activate^#(X))
                 , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            
            Details:         
              The given problem does not contain any strict rules
      
   11)
      {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
       , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
       , len^#(cons(X, Z)) -> c_6(activate^#(Z))
       , activate^#(n__len(X)) -> c_14(len^#(X))
       , add^#(s(X), Y) -> c_4(activate^#(X))
       , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))
       , len^#(X) -> c_10()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           fst(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           nil() = [0]
           s(x1) = [0] x1 + [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__fst(x1, x2) = [0] x1 + [0] x2 + [0]
           activate(x1) = [0] x1 + [0]
           from(x1) = [0] x1 + [0]
           n__from(x1) = [0] x1 + [0]
           add(x1, x2) = [0] x1 + [0] x2 + [0]
           n__add(x1, x2) = [0] x1 + [0] x2 + [0]
           len(x1) = [0] x1 + [0]
           n__len(x1) = [0] x1 + [0]
           fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_0() = [0]
           c_1(x1, x2) = [0] x1 + [0] x2 + [0]
           activate^#(x1) = [0] x1 + [0]
           from^#(x1) = [0] x1 + [0]
           c_2() = [0]
           add^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_3() = [0]
           c_4(x1) = [0] x1 + [0]
           len^#(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {len^#(X) -> c_10()}
            Weak Rules:
              {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
               , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
               , len^#(cons(X, Z)) -> c_6(activate^#(Z))
               , activate^#(n__len(X)) -> c_14(len^#(X))
               , add^#(s(X), Y) -> c_4(activate^#(X))
               , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {len^#(X) -> c_10()}
            and weakly orienting the rules
            {  fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
             , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
             , len^#(cons(X, Z)) -> c_6(activate^#(Z))
             , activate^#(n__len(X)) -> c_14(len^#(X))
             , add^#(s(X), Y) -> c_4(activate^#(X))
             , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {len^#(X) -> c_10()}
              
              Details:
                 Interpretation Functions:
                  fst(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  nil() = [0]
                  s(x1) = [1] x1 + [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__fst(x1, x2) = [1] x1 + [1] x2 + [8]
                  activate(x1) = [0] x1 + [0]
                  from(x1) = [0] x1 + [0]
                  n__from(x1) = [0] x1 + [0]
                  add(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__add(x1, x2) = [1] x1 + [1] x2 + [15]
                  len(x1) = [0] x1 + [0]
                  n__len(x1) = [1] x1 + [8]
                  fst^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_0() = [0]
                  c_1(x1, x2) = [1] x1 + [1] x2 + [1]
                  activate^#(x1) = [1] x1 + [0]
                  from^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  add^#(x1, x2) = [1] x1 + [1] x2 + [4]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  len^#(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [11]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  len^#(X) -> c_10()
                 , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))
                 , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))
                 , len^#(cons(X, Z)) -> c_6(activate^#(Z))
                 , activate^#(n__len(X)) -> c_14(len^#(X))
                 , add^#(s(X), Y) -> c_4(activate^#(X))
                 , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))}
            
            Details:         
              The given problem does not contain any strict rules