'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { fst(0(), Z) -> nil() , fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) , from(X) -> cons(X, n__from(s(X))) , add(0(), X) -> X , add(s(X), Y) -> s(n__add(activate(X), Y)) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) , fst(X1, X2) -> n__fst(X1, X2) , from(X) -> n__from(X) , add(X1, X2) -> n__add(X1, X2) , len(X) -> n__len(X) , activate(n__fst(X1, X2)) -> fst(X1, X2) , activate(n__from(X)) -> from(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(n__len(X)) -> len(X) , activate(X) -> X} Details: We have computed the following set of weak (innermost) dependency pairs: { fst^#(0(), Z) -> c_0() , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , from^#(X) -> c_2() , add^#(0(), X) -> c_3() , add^#(s(X), Y) -> c_4(activate^#(X)) , len^#(nil()) -> c_5() , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , fst^#(X1, X2) -> c_7() , from^#(X) -> c_8() , add^#(X1, X2) -> c_9() , len^#(X) -> c_10() , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , activate^#(n__from(X)) -> c_12(from^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2)) , activate^#(n__len(X)) -> c_14(len^#(X)) , activate^#(X) -> c_15()} The usable rules are: {} The estimated dependency graph contains the following edges: {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))} ==> {activate^#(n__len(X)) -> c_14(len^#(X))} {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))} ==> {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))} ==> {activate^#(n__from(X)) -> c_12(from^#(X))} {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))} ==> {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))} {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))} ==> {activate^#(X) -> c_15()} {add^#(s(X), Y) -> c_4(activate^#(X))} ==> {activate^#(n__len(X)) -> c_14(len^#(X))} {add^#(s(X), Y) -> c_4(activate^#(X))} ==> {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} {add^#(s(X), Y) -> c_4(activate^#(X))} ==> {activate^#(n__from(X)) -> c_12(from^#(X))} {add^#(s(X), Y) -> c_4(activate^#(X))} ==> {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))} {add^#(s(X), Y) -> c_4(activate^#(X))} ==> {activate^#(X) -> c_15()} {len^#(cons(X, Z)) -> c_6(activate^#(Z))} ==> {activate^#(n__len(X)) -> c_14(len^#(X))} {len^#(cons(X, Z)) -> c_6(activate^#(Z))} ==> {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} {len^#(cons(X, Z)) -> c_6(activate^#(Z))} ==> {activate^#(n__from(X)) -> c_12(from^#(X))} {len^#(cons(X, Z)) -> c_6(activate^#(Z))} ==> {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))} {len^#(cons(X, Z)) -> c_6(activate^#(Z))} ==> {activate^#(X) -> c_15()} {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))} ==> {fst^#(X1, X2) -> c_7()} {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))} ==> {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))} {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))} ==> {fst^#(0(), Z) -> c_0()} {activate^#(n__from(X)) -> c_12(from^#(X))} ==> {from^#(X) -> c_8()} {activate^#(n__from(X)) -> c_12(from^#(X))} ==> {from^#(X) -> c_2()} {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} ==> {add^#(X1, X2) -> c_9()} {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} ==> {add^#(s(X), Y) -> c_4(activate^#(X))} {activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} ==> {add^#(0(), X) -> c_3()} {activate^#(n__len(X)) -> c_14(len^#(X))} ==> {len^#(X) -> c_10()} {activate^#(n__len(X)) -> c_14(len^#(X))} ==> {len^#(cons(X, Z)) -> c_6(activate^#(Z))} {activate^#(n__len(X)) -> c_14(len^#(X))} ==> {len^#(nil()) -> c_5()} We consider the following path(s): 1) { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [0] x1 + [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__fst(x1, x2) = [0] x1 + [0] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [0] x1 + [0] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [0] x1 + [0] fst^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1, x2) = [0] x1 + [0] x2 + [0] activate^#(x1) = [0] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [0] x1 + [0] x2 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] len^#(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules { activate^#(n__len(X)) -> c_14(len^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate^#(n__len(X)) -> c_14(len^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [2] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [2] fst^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [1] activate^#(x1) = [1] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [1] c_3() = [0] c_4(x1) = [1] x1 + [1] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {add^#(s(X), Y) -> c_4(activate^#(X))} and weakly orienting the rules { activate^#(n__len(X)) -> c_14(len^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {add^#(s(X), Y) -> c_4(activate^#(X))} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [12] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [8] fst^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [1] activate^#(x1) = [1] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [9] c_3() = [0] c_4(x1) = [1] x1 + [3] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {len^#(cons(X, Z)) -> c_6(activate^#(Z))} and weakly orienting the rules { add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__len(X)) -> c_14(len^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {len^#(cons(X, Z)) -> c_6(activate^#(Z))} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [8] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [8] fst^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [1] activate^#(x1) = [1] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [1] c_3() = [0] c_4(x1) = [1] x1 + [1] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))} and weakly orienting the rules { len^#(cons(X, Z)) -> c_6(activate^#(Z)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__len(X)) -> c_14(len^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2))} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [8] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [12] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [8] fst^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [1] activate^#(x1) = [1] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [1] c_3() = [0] c_4(x1) = [1] x1 + [1] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [7] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))} and weakly orienting the rules { activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__len(X)) -> c_14(len^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z))} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [8] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [8] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [8] fst^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [0] activate^#(x1) = [1] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [1] c_3() = [0] c_4(x1) = [1] x1 + [1] len^#(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [1] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__len(X)) -> c_14(len^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: The given problem does not contain any strict rules 2) { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2)) , activate^#(n__from(X)) -> c_12(from^#(X)) , from^#(X) -> c_8()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [0] x1 + [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__fst(x1, x2) = [0] x1 + [0] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [0] x1 + [0] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [0] x1 + [0] fst^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1, x2) = [0] x1 + [0] x2 + [0] activate^#(x1) = [0] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [0] x1 + [0] x2 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] len^#(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {from^#(X) -> c_8()} Weak Rules: { activate^#(n__from(X)) -> c_12(from^#(X)) , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules {from^#(X) -> c_8()} and weakly orienting the rules { activate^#(n__from(X)) -> c_12(from^#(X)) , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {from^#(X) -> c_8()} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [8] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [1] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [3] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [0] fst^#(x1, x2) = [1] x1 + [1] x2 + [9] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [3] activate^#(x1) = [1] x1 + [1] from^#(x1) = [1] x1 + [1] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [3] c_3() = [0] c_4(x1) = [1] x1 + [0] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { from^#(X) -> c_8() , activate^#(n__from(X)) -> c_12(from^#(X)) , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: The given problem does not contain any strict rules 3) { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2)) , fst^#(0(), Z) -> c_0()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [0] x1 + [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__fst(x1, x2) = [0] x1 + [0] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [0] x1 + [0] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [0] x1 + [0] fst^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1, x2) = [0] x1 + [0] x2 + [0] activate^#(x1) = [0] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [0] x1 + [0] x2 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] len^#(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {fst^#(0(), Z) -> c_0()} Weak Rules: { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules {fst^#(0(), Z) -> c_0()} and weakly orienting the rules { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {fst^#(0(), Z) -> c_0()} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [8] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [8] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [8] fst^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [1] activate^#(x1) = [1] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [7] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { fst^#(0(), Z) -> c_0() , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: The given problem does not contain any strict rules 4) { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2)) , activate^#(n__from(X)) -> c_12(from^#(X)) , from^#(X) -> c_2()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [0] x1 + [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__fst(x1, x2) = [0] x1 + [0] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [0] x1 + [0] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [0] x1 + [0] fst^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1, x2) = [0] x1 + [0] x2 + [0] activate^#(x1) = [0] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [0] x1 + [0] x2 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] len^#(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {from^#(X) -> c_2()} Weak Rules: { activate^#(n__from(X)) -> c_12(from^#(X)) , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules {from^#(X) -> c_2()} and weakly orienting the rules { activate^#(n__from(X)) -> c_12(from^#(X)) , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {from^#(X) -> c_2()} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [8] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [1] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [3] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [0] fst^#(x1, x2) = [1] x1 + [1] x2 + [9] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [3] activate^#(x1) = [1] x1 + [1] from^#(x1) = [1] x1 + [1] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [3] c_3() = [0] c_4(x1) = [1] x1 + [0] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { from^#(X) -> c_2() , activate^#(n__from(X)) -> c_12(from^#(X)) , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: The given problem does not contain any strict rules 5) { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2)) , activate^#(n__from(X)) -> c_12(from^#(X))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [0] x1 + [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__fst(x1, x2) = [0] x1 + [0] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [0] x1 + [0] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [0] x1 + [0] fst^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1, x2) = [0] x1 + [0] x2 + [0] activate^#(x1) = [0] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [0] x1 + [0] x2 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] len^#(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {activate^#(n__from(X)) -> c_12(from^#(X))} Weak Rules: { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules {activate^#(n__from(X)) -> c_12(from^#(X))} and weakly orienting the rules { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__from(X)) -> c_12(from^#(X))} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [8] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [1] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [0] fst^#(x1, x2) = [1] x1 + [1] x2 + [9] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [7] activate^#(x1) = [1] x1 + [1] from^#(x1) = [1] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [1] c_3() = [0] c_4(x1) = [1] x1 + [0] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { activate^#(n__from(X)) -> c_12(from^#(X)) , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: The given problem does not contain any strict rules 6) { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2)) , add^#(0(), X) -> c_3()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [0] x1 + [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__fst(x1, x2) = [0] x1 + [0] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [0] x1 + [0] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [0] x1 + [0] fst^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1, x2) = [0] x1 + [0] x2 + [0] activate^#(x1) = [0] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [0] x1 + [0] x2 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] len^#(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {add^#(0(), X) -> c_3()} Weak Rules: { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules {add^#(0(), X) -> c_3()} and weakly orienting the rules { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {add^#(0(), X) -> c_3()} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [8] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [8] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [8] fst^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [1] activate^#(x1) = [1] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [1] c_3() = [0] c_4(x1) = [1] x1 + [0] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [7] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { add^#(0(), X) -> c_3() , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: The given problem does not contain any strict rules 7) { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2)) , activate^#(X) -> c_15()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [0] x1 + [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__fst(x1, x2) = [0] x1 + [0] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [0] x1 + [0] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [0] x1 + [0] fst^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1, x2) = [0] x1 + [0] x2 + [0] activate^#(x1) = [0] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [0] x1 + [0] x2 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] len^#(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {activate^#(X) -> c_15()} Weak Rules: { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules {activate^#(X) -> c_15()} and weakly orienting the rules { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(X) -> c_15()} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [2] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [15] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [8] fst^#(x1, x2) = [1] x1 + [1] x2 + [3] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [1] activate^#(x1) = [1] x1 + [1] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [8] c_3() = [0] c_4(x1) = [1] x1 + [0] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [8] c_14(x1) = [1] x1 + [3] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { activate^#(X) -> c_15() , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: The given problem does not contain any strict rules 8) { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2)) , fst^#(X1, X2) -> c_7()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [0] x1 + [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__fst(x1, x2) = [0] x1 + [0] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [0] x1 + [0] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [0] x1 + [0] fst^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1, x2) = [0] x1 + [0] x2 + [0] activate^#(x1) = [0] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [0] x1 + [0] x2 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] len^#(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {fst^#(X1, X2) -> c_7()} Weak Rules: { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules {fst^#(X1, X2) -> c_7()} and weakly orienting the rules { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {fst^#(X1, X2) -> c_7()} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [8] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [4] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [8] fst^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [1] activate^#(x1) = [1] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [1] c_3() = [0] c_4(x1) = [1] x1 + [1] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [7] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { fst^#(X1, X2) -> c_7() , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: The given problem does not contain any strict rules 9) { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2)) , add^#(X1, X2) -> c_9()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [0] x1 + [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__fst(x1, x2) = [0] x1 + [0] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [0] x1 + [0] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [0] x1 + [0] fst^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1, x2) = [0] x1 + [0] x2 + [0] activate^#(x1) = [0] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [0] x1 + [0] x2 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] len^#(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {add^#(X1, X2) -> c_9()} Weak Rules: { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules {add^#(X1, X2) -> c_9()} and weakly orienting the rules { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {add^#(X1, X2) -> c_9()} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [8] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [4] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [8] fst^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [1] activate^#(x1) = [1] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [4] c_3() = [0] c_4(x1) = [1] x1 + [1] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [7] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { add^#(X1, X2) -> c_9() , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: The given problem does not contain any strict rules 10) { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2)) , len^#(nil()) -> c_5()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [0] x1 + [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__fst(x1, x2) = [0] x1 + [0] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [0] x1 + [0] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [0] x1 + [0] fst^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1, x2) = [0] x1 + [0] x2 + [0] activate^#(x1) = [0] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [0] x1 + [0] x2 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] len^#(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {len^#(nil()) -> c_5()} Weak Rules: { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules {len^#(nil()) -> c_5()} and weakly orienting the rules { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {len^#(nil()) -> c_5()} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [8] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [8] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [8] fst^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [1] activate^#(x1) = [1] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [0] c_3() = [0] c_4(x1) = [1] x1 + [0] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [7] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { len^#(nil()) -> c_5() , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: The given problem does not contain any strict rules 11) { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2)) , len^#(X) -> c_10()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [0] x1 + [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] n__fst(x1, x2) = [0] x1 + [0] x2 + [0] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [0] x1 + [0] x2 + [0] len(x1) = [0] x1 + [0] n__len(x1) = [0] x1 + [0] fst^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1, x2) = [0] x1 + [0] x2 + [0] activate^#(x1) = [0] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [0] x1 + [0] x2 + [0] c_3() = [0] c_4(x1) = [0] x1 + [0] len^#(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {len^#(X) -> c_10()} Weak Rules: { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules {len^#(X) -> c_10()} and weakly orienting the rules { fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {len^#(X) -> c_10()} Details: Interpretation Functions: fst(x1, x2) = [0] x1 + [0] x2 + [0] 0() = [0] nil() = [0] s(x1) = [1] x1 + [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] n__fst(x1, x2) = [1] x1 + [1] x2 + [8] activate(x1) = [0] x1 + [0] from(x1) = [0] x1 + [0] n__from(x1) = [0] x1 + [0] add(x1, x2) = [0] x1 + [0] x2 + [0] n__add(x1, x2) = [1] x1 + [1] x2 + [15] len(x1) = [0] x1 + [0] n__len(x1) = [1] x1 + [8] fst^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1, x2) = [1] x1 + [1] x2 + [1] activate^#(x1) = [1] x1 + [0] from^#(x1) = [0] x1 + [0] c_2() = [0] add^#(x1, x2) = [1] x1 + [1] x2 + [4] c_3() = [0] c_4(x1) = [1] x1 + [1] len^#(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [11] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { len^#(X) -> c_10() , fst^#(s(X), cons(Y, Z)) -> c_1(activate^#(X), activate^#(Z)) , activate^#(n__fst(X1, X2)) -> c_11(fst^#(X1, X2)) , len^#(cons(X, Z)) -> c_6(activate^#(Z)) , activate^#(n__len(X)) -> c_14(len^#(X)) , add^#(s(X), Y) -> c_4(activate^#(X)) , activate^#(n__add(X1, X2)) -> c_13(add^#(X1, X2))} Details: The given problem does not contain any strict rules